Gentoo Logo

1.  Timezone

You first need to select your timezone so that your system knows where it is located. Look for your timezone in /usr/share/zoneinfo, then copy it to /etc/localtime. Please avoid the /usr/share/zoneinfo/Etc/GMT* timezones as their names do not indicate the expected zones. For instance, GMT-8 is in fact GMT+8.

Code Listing 1.1: Setting the timezone information

# ls /usr/share/zoneinfo
(Suppose you want to use GMT)
# cp /usr/share/zoneinfo/GMT /etc/localtime

1.  Installing the Sources

Choosing a Kernel

The core around which all distributions are built is the Linux kernel. It is the layer between the user programs and your system hardware. Gentoo provides its users several possible kernel sources. A full listing with description is available at the Gentoo Kernel Guide.

For HPPA we have hppa-sources. By default these sources are based on the 2.6 kernel sources. If you want to install a 2.4 kernel, you will need to install Gentoo from a working Internet connection as we do not supply those sources on our Installation CD. Continue by installing the kernel source.

Code Listing 1.1: Installing a kernel source

# emerge hppa-sources

When you take a look in /usr/src you should see a symlink called linux pointing to your kernel source. In this case, the installed kernel source points to hppa-sources-2.6.16.18-pa11. Your version may be different, so keep this in mind.

Code Listing 1.1: Viewing the kernel source symlink

# ls -l /usr/src/linux
lrwxrwxrwx    1 root     root           12 Oct 13 11:04 /usr/src/linux -> hppa-sources-2.6.16.18-pa11

Now it is time to configure and compile your kernel source. All architectures can use genkernel for this, which will build a generic kernel as used by the Installation CD. We explain the "manual" configuration first though, as it is the best way to optimize your environment.

If you want to manually configure your kernel, continue now with Default: Manual Configuration. If you want to use genkernel you should read Alternative: Using genkernel instead.

1.  Default: Manual Configuration

Introduction

Manually configuring a kernel is often seen as the most difficult procedure a Linux user ever has to perform. Nothing is less true -- after configuring a couple of kernels you don't even remember that it was difficult ;)

However, one thing is true: you must know your system when you start configuring a kernel manually. Most information can be gathered by emerging pciutils (emerge pciutils) which contains lspci. You will now be able to use lspci within the chrooted environment. You may safely ignore any pcilib warnings (like pcilib: cannot open /sys/bus/pci/devices) that lspci throws out. Alternatively, you can run lspci from a non-chrooted environment. The results are the same. You can also run lsmod to see what kernel modules the Installation CD uses (it might provide you with a nice hint on what to enable).

Now go to your kernel source directory and execute make menuconfig. This will fire up an ncurses-based configuration menu.

Code Listing 1.1: Invoking menuconfig

# cd /usr/src/linux
# make menuconfig

You will be greeted with several configuration sections. We'll first list some options you must activate (otherwise Gentoo will not function, or not function properly without additional tweaks).

Activating Required Options

First of all, activate the use of development and experimental code/drivers. You need this, otherwise some very important code/drivers won't show up:

Code Listing 1.1: Selecting experimental code/drivers

Code maturity level options --->
  [*] Prompt for development and/or incomplete code/drivers

Now go to File Systems and select support for the filesystems you use. Don't compile them as modules, otherwise your Gentoo system will not be able to mount your partitions. Also select Virtual memory and /proc file system.

Code Listing 1.1: Selecting necessary file systems

File systems --->
  Pseudo Filesystems --->
    [*] /proc file system support
    [*] Virtual memory file system support (former shm fs)

(Select one or more of the following options as needed by your system)
  <*> Reiserfs support
  <*> Ext3 journalling file system support
  <*> JFS filesystem support
  <*> Second extended fs support
  <*> XFS filesystem support

If you are using PPPoE to connect to the Internet or you are using a dial-up modem, you will need the following options in the kernel:

Code Listing 1.1: Selecting PPPoE necessary drivers

Device Drivers --->
  Networking support --->
    <*> PPP (point-to-point protocol) support
    <*>   PPP support for async serial ports
    <*>   PPP support for sync tty ports

The two compression options won't harm but are not definitely needed, neither does the PPP over Ethernet option, that might only be used by rp-pppoe when configured to do kernel mode PPPoE.

If you require it, don't forget to include support in the kernel for your ethernet card.

If you have a HIL mouse or keyboard, do not forget to compile in support for them.

Code Listing 1.1: Activating HIL support

Input core support --->
  [*] Keyboard support
  [*] Mouse support
  [*] Event interface support

If you have no mouse on your HIL port, only use the basic support:

Code Listing 1.1: Basic HIL support

HIL support --->
  [*] HIL Keyboard (basic) support

If you however want full HIL support, select the following options:

Code Listing 1.1: Full HIL support

HIL support --->
  [*] HP System Device Controller i8042 Support
  [*] HIL MLC Support
  [*] HIL Keyboard (full) support
  [*] HIL Mouse & Pointer support

Also include display driver support:

Code Listing 1.1: Display Driver support

Graphics support --->
  [*] Support for frame buffer devices
      [*] HP STI frame buffer device support
  Console display driver support --->
      [*] STI text console

When you're done configuring your kernel, continue with Compiling and Installing.

Compiling and Installing

Important: If you want to compile a 64-bit kernel, you'll need to emerge kgcc64 after you've finished installing Gentoo and rebooted. However, running a 64-bit kernel is discouraged. You should only run a 64-bit kernel if you have more than 4GB of RAM or if your server requires it, i.e. on the A500.

Now that your kernel is configured, it is time to compile and install it. Exit the configuration and start the compilation process:

Code Listing 1.1: Compiling the kernel

# make && make modules_install

When the kernel has finished compiling, copy the kernel image to /boot. Use whatever name you feel is appropriate for your kernel choice and remember it as you will need it later on when you configure your bootloader. Remember to replace <kernel-version> with the name and version of your kernel.

Code Listing 1.1: Installing the kernel

# cp vmlinux /boot/<kernel-version>

Now continue with Configuring Kernel Modules.

1.  Alternative: Using genkernel

If you are reading this section, you have chosen to use our genkernel script to configure your kernel for you.

Now that your kernel source tree is installed, it's now time to compile your kernel by using our genkernel script to automatically build a kernel for you. genkernel works by configuring a kernel nearly identically to the way our Installation CD kernel is configured. This means that when you use genkernel to build your kernel, your system will generally detect all your hardware at boot-time, just like our Installation CD does. Because genkernel doesn't require any manual kernel configuration, it is an ideal solution for those users who may not be comfortable compiling their own kernels.

Now, let's see how to use genkernel. First, emerge the genkernel ebuild:

Code Listing 1.1: Emerging genkernel

# emerge genkernel

Now, compile your kernel sources by running genkernel all. Be aware though, as genkernel compiles a kernel that supports almost all hardware, this compilation will take quite a while to finish!

Note that, if your boot partition doesn't use ext2 or ext3 as filesystem you need to manually configure your kernel using genkernel --menuconfig all and add support for your filesystem in the kernel (i.e. not as a module).

Code Listing 1.1: Running genkernel

# genkernel all
(Output removed to increase readability)
* Kernel compiled successfully!
* Required Kernel Params:
*   : root=/dev/ram0 init=/linuxrc real_root=/dev/$ROOT
*     where $ROOT is the devicenode for your root partition as
*     you should have specified in /etc/fstab
*              
* You MUST tell your bootloader to use the generated initrd
*              
* Recommended Kernel Params:
*   : vga=0x317 splash=verbose
*              
* Do NOT report kernel bugs (configs included) as genkernel bugs.
* Make sure you have the latest genkernel before reporting bugs
*              
* For more info see /usr/share/genkernel/README

Once genkernel completes, a kernel, full set of modules and initial root disk (initrd) will be created. We will use the kernel and initrd when configuring a boot loader later in this document. Write down the names of the kernel and initrd as you will need it when writing the bootloader configuration file. The initrd will be started immediately after booting to perform hardware autodetection (just like on the Installation CD) before your "real" system starts up.

Code Listing 1.1: Checking the created kernel image name and initrd

# ls /boot/kernel* /boot/initramfs*

1.  Configuring Kernel Modules

Configuring the Modules

You should list the modules you want automatically loaded in /etc/modules.autoload.d/kernel-2.6. You can add extra options to the modules too if you want.

To view all available modules, run the following find command. Don't forget to substitute "<kernel version>" with the version of the kernel you just compiled:

Code Listing 1.1: Viewing all available modules

# find /lib/modules/<kernel version>/ -type f -iname '*.o' -or -iname '*.ko'

For instance, to automatically load the 3c59x.o module, edit the kernel-2.6 file and enter the module name in it.

Code Listing 1.1: Editing /etc/modules.autoload.d/kernel-2.6

# nano -w /etc/modules.autoload.d/kernel-2.6

Code Listing 1.1: /etc/modules.autoload.d/kernel-2.6

3c59x

Continue the installation with (Configuring your System).

Page updated March 12, 2007

Donate to support our development efforts.

Copyright 2001-2014 Gentoo Foundation, Inc. Questions, Comments? Contact us.